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Abstract

An algorithm is presented to estimate the statistical distributions of identified modal parameters based on the

random errors associated with averaged frequency response function estimates. In this study the modal parameters

are assumed to be random variables and the objective is to estimate their distribution statistics (e.g. mean and

variance). The algorithm first uses a classical approach to estimate the error on the averaged frequency response

function using the coherence function averaged over an ensemble of measured samples. A Monte Carlo simulation

approach is then used to propagate the estimated spectral function errors through the modal parameter identification

process. A Bootstrap estimate of the modal parameter distribution over the full ensemble of individual measurement

samples is used to verify the accuracy of the Monte Carlo algorithm. The statistics of the resulting modal parameter

distribution are suitable for use as weights or filtering criteria in model correlation and damage identification

schemes. Convergence criteria for determining how many Monte Carlo simulations are required are also presented

and discussed. The technique is demonstrated via application to a simulated frequency response function with

known parameter distributions and to experimental data from tests of an in situ bridge.
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Introduction

Many applications in the fields of mechanical, aerospace, automotive, and civil engineering require the measurement

of modal vibration data to allow analysts to properly model a structure or other mechanical system. The measured

data sets are generally reduced to a relatively small set of modal parameters - typically modal frequencies, modal
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damping ratios, and mode shapes. These parameters are then compared to analytical models to allow verification

and refinement of the models.

The correlation of analytical models with measured modal parameters is important because of the uncertainty that is

inherent in many engineering assumptions about physical phenomena. This uncertainty is particularly apparent in

parameters describing the stiffnesses of structural joints, dynamic energy loss mechanisms (e.g. damping), and

structural boundary conditions (especially when the boundaries interact with media which are difficult to

analytically model, such as soil). To initially model these known uncertainties, common engineering practice is to

use values that have previously been experimentally observed, simplified idealizations of the physical system, and

engineering judgment. These assumptions must be used until experimental data can be obtained to judge the validity

of the assumed values.

One important issue in the application of measured data to validate engineering models, which is often overlooked,

is the variability inherent in the measured data and the corresponding variability in the modal parameters extracted

from the data. The measured data are to some extent always subject to variability, and so there will always be some

variability in the parameters extracted from different data samples. The classical approach to dealing with this

variability is to assume that the modal parameters are inherently deterministic quantities and are corrupted by

additive “errors” during the measurement process, as described in Bendat and Piersol (1980). In this context, the

term “errors” is defined as all contributing factors (both random and systematic) that cause the measured structural

response to be different than the actual structural response. If it is assumed that the errors are random, then the

variability on the identified modal parameters can be expressed in terms of statistical measures such as the mean and

standard deviation. Common practice is to express the random error as zero-mean and Gaussian. The mean of the

measured parameter estimate is then defined to be the deterministic parameter value, with the random error

expressed by statistical confidence intervals. Such intervals indicate the range of values of the parameter that one

should expect to observe experimentally.

A related approach, and the one used in this paper, is to treat the modal parameters themselves as random variables,

rather than treating them as deterministic quantities corrupted by random errors. This approach has a primary

advantage in terms of the underlying philosophy of the structural model: This approach allows the full range of
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behavior of the parameter to be represented, rather than estimating a “most likely” deterministic value. Under the

deterministic approach, only a single value of each parameter is known, and thus only a single response value is

calculated for the structure. However, when the parameters are treated as random variables, the behavior of the

system can be predicted over the full range of values for those parameters. For example, when a modal damping

value is estimated as a deterministic quantity, the model that it is used in can only predict the effects of one value of

modal damping for that mode. However, estimating that same modal damping value as a random variable allows the

model to predict the structure’s behavior over the appropriate range of damping values as described by its identified

statistical distribution. In some applications the structural response is extremely sensitive to particular modal

parameters, and thus the ability to predict the structure’s behavior over a range of values for the identified parameter

is crucial. It is important to note that the standard deviations of the identified modal parameters using this type of

approach are quite small, typically on the order of 0.1% - 0.2% of the estimated mean value. However, these levels

of variability can be quite important in areas of study such as damage identification given the relative insensitivity of

modal parameters to many types of system damage.

The question, then, is how does one compute the statistical distribution of the identified modal parameters given a

set of repeated vibration measurements? Bendat and Piersol (1980) present a technique to estimate the statistical

distribution of the measured frequency response function components based on the coherence function. From that

point there are basically two different methods for propagating these errors through the identification process to

estimate the statistics of the modal parameters: 1) Perform a sensitivity analysis of the algorithm to express the

statistics of the modal parameters as linear combinations of the statistics of the FRFs, or 2) Use a sampling method

to estimate the FRF statistics based on realizations of an assumed random distribution for the FRF values.

Algorithms such as those presented by Longman, et al. (1988) (for the Eigensystem Realization Algorithm) and

Peterson, et al. (1996) (for the Fast Eigensystem Realization Algorithm) follow the first approach by using a

perturbation analysis of the entire modal identification procedure to determine the sensitivity of the modal

parameters to errors in the measured data. The advantage of this approach is that the propagation of the errors is

computationally efficient once the sensitivity has been computed analytically. The disadvantage to this approach is

that it is mathematically complicated to compute the sensitivity of the entire procedure, and that it assumes that a
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first-order approximation of the error propagation is accurate enough for a given modal parameter estimation

scheme and a given data set.

The second approach, using sampling techniques to propagate errors from the FRF to the identified modal

parameters, is used in this paper. Given a series of repeated FRF measurements, the Bootstrap approach (Paez and

Hunter, 1998) provides an accurate estimate of the modal parameter statistics, as demonstrated on simulated data in

this paper. However, this approach requires the individual FRF samples to be stored, whereas the standard protocol

for the majority of commercial modal data acquisition software packages is to save only the ensemble averages of

the spectral functions. (It should be noted that with the data processing and storage capabilities of modern portable

computers there are typically no hardware restrictions that would prevent storage of the individual samples of the

spectral functions.) To allow estimates of the modal parameters to be made for averaged FRF data, a simple

procedure using Monte Carlo simulation is presented. Although the procedure is described in terms of a particular

modal-parameter-identification scheme, any algorithm could be used. The accuracy of the modal parameter statistics

is verified by comparison with the Bootstrap technique.

This paper is organized as follows: First, the process of spectral function and modal parameter estimation is

presented, including the particular modal parameter identification algorithm used in this research. Next, the

procedure for estimating the statistics on the measured spectral functions is outlined, including a discussion of the

sources of measurement error. Next, the procedure for propagating the statistics to the identified modal parameters

from the individual samples of the repeated FRF measurements using the Bootstrap technique is presented, followed

by the corresponding technique to estimate the modal parameter statistics from averaged FRF data using the Monte

Carlo approach. Finally, the Monte Carlo and Bootstrap techniques are verified by application to simulated FRF data

with known modal parameter statistics and validated by application to measured modal data from the Alamosa

Canyon bridge tests.

Identification Of Modal Parameters From Spectral Estimates

As described in the introduction, it is often desirable to measure vibration data from a structure and then reduce the

results of these measurements to a relatively small set of modal frequencies, modal damping ratios, and mode
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shapes. As described by McConnell (1995), the first step in this procedure is to obtain measured excitation time

histories ( )tx  (typically in units of force) and the measured response time histories ( )ty  (typically in units of

acceleration) using appropriate sampling, windowing, and filtering procedures. The estimation of frequency-domain

measurement functions follows with the computation of the auto-power spectral density function estimates ( )ωxxĜ

and ( )ωyyĜ  and the cross-power spectral density function estimates ( )ωxyĜ . The next step in this procedure is

the estimation of the FRF (the normalized frequency-domain input-output relationship) and coherence function (a

normalized measure of the linearity between the excitation signal and the response signal that takes on a value

between 0 and 1) for each x-y pair. There are many different ways of estimating the FRF based on the assumptions

about the primary sources of random error in the measurements. The most common FRF estimate, based on the

assumption that the random error on the excitation signal measurement is small, is the so-called 1H  FRF estimate
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Any deviation from the linear input-output relationship of the structure such as those that may arise from

nonlinearities, unmeasured excitations, or signal processing procedures will degrade the value of the coherence

function away from 1. This occurrence is commonly referred to as “loss of coherence.” As explained in the next

section, the spectral density function estimates ( )ωxxĜ , ( )ωyyĜ , and ( )ωxyĜ , are averaged over several

instances of excitation to minimize random errors. Thus the values used for the computations in equation (1) and

equation (2) are typically not the actual values ( )ωxxĜ , ( )ωyyĜ , and ( )ωxyĜ , but rather are “estimates” obtained

by observing the signals over several instances of excitation and averaging the results.
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The identification of modal parameters from the estimated FRF is accomplished by any number of methods that fit

an analytical modal model to the measured FRF data, as described by Maia and Silva (1997). Some methods fit the

FRF directly, while others fit the inverse discrete Fourier transform, known as the discrete unit impulse response

function. The method used to identify modal parameters in this paper is the Rational Polynomial curve fit, as

presented originally by Richardson and Formenti (1982) although, as stated previously, any modal parameter

identification algorithm could be used. The Rational Polynomial curve fit is based on the expression of the FRF

between a given input- output pair as a ratio of two polynomials. This expression can be written as
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where p is the number of modes and r is the number of residual terms. The residual terms account for the influence

of modes which are located outside the curve-fit bandwidth. The rational polynomial form of Eq. (3) can be

converted to pole-residue form and from there the modal parameters can be extracted. There is one denominator

polynomial for the entire set of data because each FRF has the same pole locations that are functions of the modal

frequencies and modal damping ratios. However, each DOF has a different numerator polynomial because each FRF

has different residues that are functions of the mode shape amplitudes.

Estimation Of Statistical Distributions For Measured Spectral Functions

As mentioned in the introduction, measured data contain errors caused by many sources that result in measured

spectral function estimates that are not equal to the actual spectral functions of the structure. The errors that are

present in the measured modal data can be divided into two basic categories, as described in Bendat and Piersol

(1980): bias (systematic) errors and random errors. Bias errors cause the mean of the function estimate not to

converge to the actual value of the function as more averages are taken. Random errors, however, are those error
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components that will tend to cancel out as more averages are taken. Bias errors arise primarily from the following

sources:

1. Electrical noise in the excitation measurement that does not produce a physical response

2. Bias in the spectral density estimates resulting from inadequate spectral (sampling) resolution

3. System nonlinearities

4. Unmeasured excitations that contribute to the response and are correlated with the measured excitation

5. Errors related to signal processing such as aliasing and leakage

Random errors arise primarily from 3 sources:

1. Electrical noise in the sensors and signal processing, and digital noise in the sampling process

2. Unmeasured excitations that contribute to the response and are uncorrelated with the measured excitation

3. System nonlinearities

Many standard modal testing practices are used to minimize the effects of the bias errors. For example, filtering and

windowing can minimize the effects of aliasing and leakage, respectively. Presuming that the data acquisition

parameters and signal processing procedures are chosen so that the bias errors are minimized, and assuming that the

FRF estimate in equation (1) is used and that structural linearity and reciprocity are verified for the measured

bandwidth, then the primary source of errors will be random errors arising from unmeasured excitations. Using the

assumption that the primary errors are random and uncorrelated with the excitation and structural responses, and that

the excitation input is from a single source, the confidence intervals µσ  on the estimate of the mean FRF magnitude

and phase random are (according  to Bendat and Piersol, 1980):
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where dn  is the number of measured FRF samples. Typically a particular statistical distribution is assumed, so that

a percentage confidence level can be associated with the confidence intervals µσ . In practice, because the true

coherence functions ( )ωγ 2
xy  are unknown, the estimates ( )ωγ 2ˆxy  defined in equation (2) are used instead. This

substitution produces accurate confidence interval estimates when the confidence interval estimate is approximately

20% or less of the mean estimate for a particular parameter. As a practical matter, the argument of the arcsin

function in equation (4) must be constrained to be less than 1.

It should be noted that the formulae in equation (4) are estimates of the confidence intervals on the mean of the

magnitude and phase, NOT estimates of the standard deviation of the magnitude and phase, assuming that the

magnitude and phase themselves are Gaussian-distributed random variables. As derived in Bevington and Robinson

(1992), the relationship between the estimate of the population standard deviation, σ , and the confidence interval

on the mean estimate, µσ , is given as

dn
σσ µ = (5)

Thus, the estimates of the standard deviations of the FRF magnitude and phase are
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It is noted by comparing equations (6) and (4) that they differ by the factor dn  as described in Equation (5). For

the phase, this factor is applied to the operand of the arcsin function because the relationship of Equation (5) is

applied to the relative error terms, from which the standard deviation estimates of equations (6) are derived.

Propagation of estimated errors in modal parameter identification

In the previous section, the statistics on the spectral function errors were estimated. The next step is to propagate

those errors through the modal parameter identification procedure using a sampling technique to estimate the

statistical distributions of those parameters. As described in the introduction, there are two basic procedures that can

be used to accomplish the propagation: Bootstrap simulation using the individual measured FRF samples, or Monte

Carlo simulation using the ensemble average FRF estimates. Each of these procedures is outlined in this section,

along with discussions of their advantages and disadvantages. The Bootstrap method is more accurate because it

does not assume the form of the parameter distribution, but the Monte Carlo method can be applied to averaged

modal data, which is of interest in many practical applications.

The more accurate sampling approach for the propagation of FRF statistics to modal parameter statistics is the

Bootstrap approach as presented in Paez and Hunter (1998). The Bootstrap analysis procedure randomly selects

individual FRF measurements to form the ensemble average. Because the FRFs for a particular DOF are selected at

random and “with replacement,” a single FRF sample may be used more than once in the ensemble average while

others may not be included. This process results in ensemble averages that are based on random weighting of the

sample FRFs. The individual FRF samples are required (rather than the ensemble average FRF spectra). This

Bootstrap approach is advantageous because it does not require an assumption of the form of the FRF statistical

distribution because of the random FRF weighting. Once the randomly weighted ensemble averages are formed for

each DOF, the modal parameter identification procedure is applied. This procedure is repeated numerous times to

form a histogram of the identified modal parameters. Statistics for the distribution of the modal parameters can be

estimated from this histogram.

The steps used to implement the Bootstrap procedure are shown in Figure 1 and described here:
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1. Measure and store dn  FRF samples (acquired at each DOF simultaneously).

2. Randomly select dn  of the dn  FRFs, with replacement, and form an ensemble average (using the same dn

FRFs at each DOF).

3. Apply the modal parameter identification procedure to this ensemble average to estimate a set of modal

parameters (resonant frequencies, modal damping, mode shape amplitudes and phases).

4. Repeat steps 1-3 and form a histogram for each modal parameter.

5. Calculate the statistics of the distribution represented by this histogram to check for convergence.

Note that no assumption on the distribution of the identified parameters, no assumption about the form of the input

or response, and no assumption about the number of inputs or responses are made in this analysis. The Bootstrap

method does require each individual FRF sample to be stored, which is sometimes difficult to accomplish with

commercial modal data-acquisition software.

An alternative to the Bootstrap approach is required for the case when only the averaged FRFs are available (which

is the majority of cases). In this situation, the Monte Carlo simulation technique derived here can be used as an

alternative. As described in Press, et al. (1992), Monte Carlo simulation is a procedure whereby noisy data sets are

repeatedly “simulated” using the assumed statistical distribution of error on the data. The identification procedure is

then applied to each of the simulated data sets, producing a set of identified model parameters. After a sufficient

number of simulations, the distribution of the resulting set of identified model parameters is assumed to be

representative of the distribution of the true model parameters plus the effects of the measurement errors.

The basic procedure for the Monte Carlo simulation used in this analysis is shown in Figure 2 and described here. In

the previous section, the statistical distributions on the measured FRFs were defined. These assumed distributions

are the basis for the generation of data sets for the Monte Carlo simulation. First, the mean and standard deviation on

the FRF magnitude and phase, computed using equation (4), are used to generate a “noisy” FRF ( )ωxyH~  as
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( ) ( ) ( )ωωω xyHj
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where the magnitude and phase components are drawn from a multivariate Gaussian random population R with the

following statistics:
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The simulated FRF ( )ωxyH~  is then used for the identification of a set of modal parameters using any modal

parameter identification scheme, although the Rational Polynomial curve fit is used for this research. (In the case of

multiple DOF, all of the individual FRFs are included in equation (8).) The resulting modal frequencies, modal

damping ratios, and mode shapes are stored for each simulation and histograms are accumulated. This procedure is

repeated until the statistics on the modal parameters converge.

There is one primary drawback to the Monte Carlo simulation approach: The method requires an assumption of the

form of the distribution (in this case Gaussian) of the variability of the FRF samples. However, it will operate on

averaged FRF data whereas the Bootstrap will not. Finally, it should be noted that both the Monte Carlo and the

Bootstrap procedures will not account for bias errors introduced by signal processing (for example, those introduced

by windowing functions) or for bias errors introduced during the parameter estimation procedure.

Defining the criteria for determining when the results of the Monte Carlo and Bootstrap simulations have converged

is important. These criteria are used to set the limits at which the simulation runs should cease. The criteria are

established by monitoring the convergence of the first four statistical moments of the modal parameter distributions.

The first moment is the mean and the second moment is the standard deviation, computed as described in any

elementary statistics textbook. The third moment (distribution skewness) is estimated as
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and the fourth moment (distribution kurtosis or flatness) is estimated as
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 (In these equations, x  is the vector of modal parameters from the Monte Carlo or Bootstrap simulations, x  and σ

are the mean and standard deviation of this vector, and N  is the number of Monte Carlo or Bootstrap simulations.)

For a perfect Gaussian distribution, the skewness and kurtosis will both be zero. Press, et al. (1992) suggest that a

distribution with a skewness less than N15  and kurtosis less than N96  can be considered to be a Gaussian

distribution. The convergence of these four statistical moments are the quantitative measures used in this paper to

determine that a sufficient number of Monte Carlo and Bootstrap simulations have been performed. If the skewness

and kurtosis converge to within the specified tolerances for a particular parameter, then that parameter’s distribution

is considered to be Gaussian.

Application To Simulated Frequency Response Function Data

To demonstrate the proposed method, it is first applied to a sequence of FRF’s generated with modal frequencies

and damping drawn randomly from a known Gaussian population. The objective of the demonstration is to show

that the correct random distributions for these parameters are obtained from the identification procedure. The

formula used to generate the FRFs is:
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where nω , nζ , and nA  are the modal frequency, damping ratio, and residue for the nth mode, respectively,

1−=j  and ( )*  represents complex conjugate. The modal parameter distribution statistics are given in Table 1.

For the example, 30=dn  FRFs are generated for 1 mode, and are shown in Figure 3. For the Bootstrap analysis, a

random sampling of the 30=dn  FRFs are selected in each simulation. The selected FRFs are averaged and a set
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of modal parameters is identified from the averaged FRF. This procedure is repeated bootn  times. For the Monte

Carlo analysis, a mean and standard deviation are defined from the dn  generated FRFs (shown in Figure 4), then

this new distribution is sampled to obtain the mcn  number of FRFs for the Monte Carlo run. A set of modal

parameters is then extracted from each of the mcn  Monte Carlo FRFs.

The results of the two methods are shown in Table 1 alongside the known statistics for the parameters. Figure 5

shows convergence plots for the mean and standard deviation of the modal frequency and modal damping

parameters. The convergence of the distribution’s kurtosis is shown in Figure 6. The convergence of the first modal

frequency mean with +/- 2 STD bounds is shown in Figure 7. All of these plots indicate that a) both the MC and

Bootstrap simulations have converged, and b) both the MC and Bootstrap approaches yield the correct statistics for

the identified modal parameters to within a reasonable tolerance. These results verify that both the Bootstrap and

Monte Carlo algorithms will identify the correct statistical distributions when the parameters are generated from

known distributions.

Experimental Implementation And Validation

In this section the verified Monte Carlo and Bootstrap approaches will be applied to experimentally measured data

from the Alamosa Canyon Bridge. The results will demonstrate that the Monte Carlo technique produces statistics

from the averaged FRF data that are comparable to those obtained from the individual FRF samples using the

Bootstrap technique. Thus, the validity of the Monte Carlo approach will be demonstrated on experimental data.

The Alamosa Canyon Bridge has seven independent spans with a common pier between successive spans. An

elevation view of the bridge is shown in Figure 8 along with a diagram of the bridge cross section. Each span

consists of a concrete deck supported by six W30x116 steel girders. The roadway in each span is approximately 7.3

m (24 ft) wide and 15.2 (50 ft) long. A concrete curb and guardrail are integrally attached to the deck. Four sets of

cross braces are equally spaced along the length of the span between adjacent girders. The cross braces are channel

sections (C12x25). The bridge is aligned in a north-south direction.
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The data acquisition system and measurement hardware described in Farrar, et al. (1997) were set up to measure

acceleration- and force-time histories. FRFs and coherence functions were then calculated from the measured

quantities. Sampling parameters were specified that calculated the FRFs from a 16-s time window discretized with

2048 samples. The FRFs were calculated for a frequency range of 0 to 50 Hz. These sampling parameters produced

a frequency resolution of 0.0625 Hz. A Force window was applied to the signal from the hammer’s force transducer

and exponential windows were applied to the signals from the accelerometer. AC coupling was specified to

minimize DC offsets.

A total of 31 acceleration measurements were made on the concrete deck and on the girders below the bridge as

shown in Figure 9. Five accelerometers were spaced along the length of each girder. Because of the limited number

of data channels, measurements were not made on the girders at the abutment or at the pier. Excitation was applied

in the vertical direction on the top surface of the deck with an instrumented hammer. The force-input and

acceleration-response time histories obtained from each impact were subsequently transformed into the frequency

domain so that the FRFs and coherence functions could be estimated. Thirty averages were used for these estimates.

With the sampling parameters listed above and the overload reject specified, data acquisition for a specific test

usually occurred over a time period of approximately 30 - 45 minutes.

Observation of the modal parameters of the bridge over time indicated that there was variability inherent in the

response of the structure. Figure 10 shows the variability of the first modal frequency with time and temperature

differential. The obvious variation of the bridge modal parameters with time and temperature demonstrates that for

this structure it is legitimate to treat the modal parameters as random variables. A more in-depth treatment of the

temperature-dependent variability is presented by Cornwell, et al. (1999). Because the 30 FRF samples from each

ACBT test were saved individually (no averaging), the Bootstrap method can be applied directly. For each Bootstrap

simulation, a sample of 30 FRFs are drawn randomly with replacement from the set of 30 measured FRFs shown in

Figure 11. The results of the Bootstrap simulation are shown in Table 2. The Bootstrap results are considered here to

accurately represent the distribution of the identified modal parameters over the ensemble of 30 samples acquired.

Given that during most modal tests only the averaged data are saved, it is interesting to see how accurately the

distributions of the modal parameters can be obtained from the averaged FRF data. To obtain the modal parameter
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statistics from the averaged data, it is necessary to implement the Monte Carlo approach derived above. First, the

distributions on the FRF components are computed using Equations (6). The mean and standard deviation bounds

are shown for a typical FRF channel in Figure 12, along with the corresponding coherence function. Applying the

Monte Carlo method results in the modal parameter statistics shown in Table 2. The convergence of Mode 1

frequency and damping ratio for both the Monte Carlo and Bootstrap approaches is shown in Figure 13, and the

convergence of the kurtosis statistics is shown in Figure 14. The convergence of the mean of modal frequency 1 +/-

2 STD is shown in Figure 15. The other two identified modes show similar convergence.

Inspection of the convergence plots indicates that the number of simulation runs used was sufficient for both the

Monte Carlo and Bootstrap techniques. The convergence of the kurtosis, in particular, indicates that the distributions

of the identified modal parameters can be considered to be Gaussian. Overall, the Monte Carlo statistics show good

agreement with the Bootstrap statistics. Thus, the Monte Carlo approach presented here provides adequate estimates

of the statistics of the identified modal parameters from averaged frequency response function data.

Conclusions and Issues

This paper has presented a method for computing statistical distributions for modal parameters identified from

averaged frequency response function data. The method compares favorably to the previously derived Bootstrap

technique. This algorithm can be used to obtain statistical distributions from any averaged FRF data provided only

that the averaged coherence functions are also saved, although it is preferable to save the individual FRF samples

and perform a Bootstrap analysis. This approach treats the modal parameters as inherently random variables rather

than deterministic quantities corrupted by random noise, which is fundamentally different than previous approaches

to quantifying the statistics of modal parameter estimates. This approach can be implemented with any modal

parameter curve-fitting method. An application of this technique that is under further investigation is the separation

of random parameter fluctuations caused by noise from those caused by changes in the environment of the structure.

Finally, it should be noted that the error captured in the coherence function is only a measure of that error

attributable to random sources. Also, influences other than random error (such as nonlinearity) can cause losses in

coherence and thus overestimation of the variability of the identified parameters. Overall, the approach presented

here appears to be an effective way to determine statistics on identified modal parameters.
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Tables & Figures

Table 1: Statistics of Identified Parameters for Random Simulated FRFs

Mean
(1st Moment)

Standard Deviation
(2nd Moment)

Skewness
(3rd Moment) <

dn15

Kurtosis
(4th Moment) <

dn96

Population
Modal Frequency

(Hz)

5.00 0.0100 Yes Yes

Identified
Modal Frequency,

Bootstrap
(Hz)

5.00 0.011 No No

Modal Frequency Error,
Bootstrap (%)

0.0480 % 10.0 %

Identified
Modal Frequency,

Monte Carlo
(Hz)

5.00 0.0109 Yes Yes

Modal Frequency Error,
Monte Carlo (%)

0.0500 % 9.40 %

Population
Modal Damping

0.0100 0.00100 Yes Yes

Identified
Modal Damping,

Bootstrap

0.00992 0.00118 No Yes

Modal Damping Error,
Bootstrap(%)

0.799 % 17.5 %

Identified
Modal Damping,

Monte Carlo

0.00992 0.00121 No No

Modal Damping Error,
Monte Carlo (%)

0.840 % 21.0 %
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Table 2: Statistics of Identified Parameters for Alamosa Canyon Bridge FRFs

Mean
(1st Moment)

Standard Deviation
(2nd Moment)

Skewness
(3rd Moment) <

dn15

Kurtosis
(4th Moment) <

dn96

Mode 1 Frequency,
Bootstrap (Hz)

7.303 0.0096 Y Y

Mode 1 Frequency,
Monte Carlo (Hz)

7.301 0.0098 Y Y

Mode 1 Frequency
Difference† (%)

-0.02% 2.08%

Mode 1 Damping,
Bootstrap (Hz)

0.0184 0.0011 Y Y

Mode 1 Damping,
Monte Carlo (Hz)

0.0174 0.0014 N Y

Mode 1 Damping
Difference (%)

-5.43% 27.27%

Mode 2 Frequency,
Bootstrap (Hz)

8.122 0.0161 N Y

Mode 2 Frequency,
Monte Carlo (Hz)

8.111 0.0128 Y Y

Mode 2 Frequency
Difference (%)

-0.13% -20.50%

Mode 2 Damping,
Bootstrap (Hz)

0.0174 0.0019 N Y

Mode 2 Damping,
Monte Carlo (Hz)

0.0166 0.0019 Y Y

Mode 2 Damping
Difference (%)

-4.60% 0.00%

                                                          

† Difference = (Bootstrap – Monte Carlo) / Bootstrap x 100%
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Mode 3 Frequency,
Bootstrap (Hz)

11.600 0.0117 N Y

Mode 3 Frequency,
Monte Carlo (Hz)

11.598 0.0115 Y Y

Mode 3 Frequency
Difference (%)

-0.02% -1.71%

Mode 3 Damping,
Bootstrap (Hz)

0.0102 0.0013 Y Y

Mode 3 Damping,
Monte Carlo (Hz)

0.0097 0.0009 N Y

Mode 3 Damping
Difference (%)

-4.90% -30.77%
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 Randomly draw dn samples from ( )ωxyĤ and average them to form ( )ωiĤ

 

 

Statistics Converged? 

Identify iω̂ , iζ̂  from ( )ωiĤ

Add iω̂ , iζ̂  to set of identified parameters. Compute Statistics and check convergence.

 Compute final statistics ( )iωµ ˆ , ( )iωσ ˆ , etc.

Yes 

No 

Figure 1: Flowchart of Bootstrap Procedure for Estimating Statistical Distributions
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Figure 2: Flowchart of Monte Carlo Procedure for Propagating Statistical Distributions
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Figure 3: Simulated Frequency Response Functions for Bootstrap Analysis

Figure 4: Simulated Frequency Response Function Bounds (2 STD) for Monte Carlo Analysis
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Figure 5: Convergence of Modal Parameter Statistics for Simulated Frequency Response Data

Figure 6: Convergence of Modal Parameter Kurtosis for Simulated Frequency Response Data
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Figure 7: Convergence of First Modal Frequency for Simulated Frequency Response Data
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Figure 8: Elevation View and Cross Section of the Alamosa Canyon Bridge
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Figure 9: Sensor Layout for Alamosa Canyon Bridge Tests

-2.4 -2.5

8.3

31.95

20.95

6.2
-1.7 -2 1.2 -0.35 -0.35

7.30

7.40

7.50

7.60

Time of Day

Mean Frequency Value

Bridge Deck Temp. Differential

Figure 10: Variability of First Modal Frequency with Time and Temperature Differential
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Figure 11: Individual FRF Samples from Alamosa Canyon Bridge Test
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Figure 12: Frequency Response Function Bounds (2 STD) from Alamosa Canyon Bridge Test

(with Coherence)
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Figure 13: Convergence of Modal Parameter Statistics for Alamosa Canyon Frequency Response Data

(Mode 1)
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Figure 14: Convergence of Modal Parameter Kurtosis for Alamosa Canyon Bridge Data

Figure 15: Convergence of First Modal Frequency for Alamosa Canyon Bridge Data (Monte Carlo Method)
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